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SYSTEM AND METHOD FOR
STATISTICALLY SEPARATING AND
CHARACTERIZING NOISE WHICH IS
ADDED TO A SIGNAL OF A MACHINE OR A
SYSTEM

FIELD OF THE INVENTION

The present invention relates to the field of estimating and
characterizing noise which is added to a signal of a machine
or a system. More particularly, the invention relates to a
method and system for estimating and characterizing the
component of the added noise of a signal. The method of the
invention enables the finding of both the statistical nature and
the type of the probability distribution or density functions of
the noise component as well as its variance.

BACKGROUND OF THE INVENTION

The importance of the knowledge of the fundamental prop-
erties of stochastic systems and processes has been recently
acknowledged by a growing portion of the scientific and
engineering community. Among other properties of stochas-
tic processes, the nature of the noise component which con-
taminates the pure signal of the system is of major impor-
tance. The term “noisy signal” or “raw signal” whenever
referred to in this application, refers to a signal which com-
prises a noise component and a pure signal which are insepa-
rable. Throughout this application, the term “noise” refers to
any random or unknown component whose exact behavior
cannot be exactly predicted, but knowing its probability den-
sity function is highly valuable. Also, the term “variance”
relates to the second moment of the probability density func-
tion and is used as is common in the art of Statistics and
Probability theories. Moreover, throughout this application
the terms “machine”, “system” and “process” are used inter-
changeably with respect to the method of the invention. An
accurate estimation of the noise properties can provide to the
system designer very important tools for improving the sys-
tem behavior. An accurate determination of the noise proper-
ties is particularly important for dynamical systems where
non-linear behavior is expected and in which the noise may
seriously alter any estimation of the states of the system, if not
to cause a total divergence of the parameters of the system
model. Such conditions are particularly common in non-
linear systems when modeled by recursive or adaptive meth-
ods such as Weiner or Kalman filtering. The principles and
theory of Kalman and Weiner filtering are described, for
example, in Gelb, A., “Applied Optimal Estimation”, Chapter
1, pp. 1-7, The MIT Press, Cambridge, Mass., 1974.

The following United States patents are believed to repre-
sent the state of the art for Signal estimation, noise character-
istics, and Kalman and adaptive filtering in applicable sys-
tems: U.S. Pat. Nos. 6,829,534; 6,740,518; 6,718,259; 6,658,
261; 6,836,679; 6,754,293; and 6,697,492.

The theory of non-linear filtering and its applications are
discussed in:

(a) Grewal, M. S. et al., Kalman Filtering, Prentice-Hall,

1993;

(b) Jazwinski, A. H., Stochastic Processes and Filtering

Theory, Academic Press, New York, 1970, chapters 1 and

2, pp. 1-13;

(c) Gelb, A., Applied Optimal Estimation, The MIT Press,

Cambridge, Mass., 1974 Chapter 1, pp. 1-7; and
(d) Wiener, N., Journal of Mathematical and Physical Sci-

ences 2, 132 (1923).
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The art of signal processing, probability and stochastic
processes and noise characteristics are also discussed in:

(a) Bruno Aiazzi et al., IEEE Signal Processing Lett. 6 138
(1999);

(b) R. Chandramouli et al., “Probability, Random Variables
and Stochastic Processes”, A. Papoulis, McGraw-Hill
USA, (1965);

(c) IEEE Signal Processing Lett. 6 129;

(d) Zbyszek P. Karkuszewski, Christopher Jarzynski, and
Wojciech H. Zurek, Phys Rev. Lett. 89, 170405 (2002);
(e) A. F. Faruqi and K. J. Turner Applied Mathematics and

Computation, 115,213 (2000);

(D) J. P. M. Heald and 1. Stark, Phys. Rev. Lett. 84, 2366
(2000,

(g2) A. A. Dorogovtsev, Stochastic Analysis and Random
Maps in Hilbert Space, VSP Publishing, The Netherlands,
(1994) (in particular see the consideration for high-order
stochastic derivative in chap. 1);

(h) H. Kleinert and S. V. Shabanov, Phys. Lett. A, 235, 105,
1997y,

(1) Elachi, C., Science, 209, 1073-1082, (1980);

(j) Valeri Kontorovich et al., IEEE Signal Processing Lett. 3,
19 (1996);

(k) Steve Kay., IEEE Signal Processing Lett. 5,318 (1998);

(1) Michael 1. Tribelsky, Phys. Rev. Lett. 89, 070201 (2002).
The theory of curve fitting, differentiation and high order

derivatives is discussed in:

(a) G. Di Nunno, Pure Mathematics 12, 1, (2001); and

(b) K. Weierstrass, Mathematische Werke, Bd. 111, Berlin
1903, pp. 1-17.

It is an object of the present invention to provide a method
for the statistical separation and determination of the noise
properties from the noisy signal.

It is another object of the invention to provide such a
method that can be performed in real-time.

It is still another object of the present invention to provide
such a method for characterizing the noise which is adaptive.

It is still another object of the present invention to provide
said method for characterizing the noise that can determine
not only the variance of the noisy signal, but also the type of
the probability density function (pdf) of the noise component.

It is still another object of the present invention to provide
said method for characterizing the noise that does not depend
on a priori knowledge of the structure of the pure signal.

It is still another object of the present invention to provide
said method for characterizing the noise that does not depend
on the structure of the pure signal.

It is still another object of the present invention to provide
said method for characterizing the noise that involves defin-
ing a window of the analyzed signal, and given said window,
the method does not depend on any accumulative information
outside said window boundaries.

Other objects and advantages of the present invention will
become apparent as the description proceeds.

SUMMARY OF THE INVENTION

The present invention refers to a method for finding the
probability density function and the variance properties of the
noise component N of a raw signal S of a machine or a system,
said raw signal S being combined of a pure signal component
P and said noise component N, the method comprising the
steps of: (a) defining a window within said raw signal; (b)
recording the raw signal S; (c) numerically differentiating the
raw signal S within the range of said window at least a number
of times m to obtain an m order differentiated signal; (d)
finding a histogram that best fits the m order differentiated
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signal; (e) finding a probability density function type that fits
the distribution of the histogram; (f) determining the variance
(or any equivalent parameter, depending on the specific said
pdf type) of the histogram, said histogram variance being
essentially the m order variance 02(,,,) of'the noise component
N; and (g) knowing the histogram distribution type, and the m
order variance 02(,") of the histogram, transforming the m
order variance 02(,,,) to the zero order variance 02(0), said 02(0)
being the variance of the pdf of the noise component N, and
wherein the histogram type as found in step (e) being the
probability density function type of the noise component N.

Preferably, the method is repeatedly performed as the raw
signal S progresses.

Preferably, the method is performed in real-time.

Preferably, the probability density function type that fits
the distribution of the histogram is the one from a list that
found to be best fitting the distribution of the histogram.

Preferably, the list comprises only one probability density
function type.

Preferably, the one probability density function type is the
Gaussian type.

Preferably, the transformation is performed by means of a
specific expression suitable for the said fitted probability
density function, wherein said specific expression is derived
from the following general expression

= fD i f {ljs}"f(f)}df‘m’

Preferably, when the fitted probability distribution func-
tion is Gaussian, the transform is performed by means of the
following specific expression

d" N0, o3)

o = AN, Bmad)

The present invention also relates to an apparatus for deter-
mining the probability density function type and the variance
properties of the noise component N of a raw signal S of a
machine or a system, said raw signal S being combined of a
pure signal component P and said noise component N, the
system comprises: (a) differentiating module, for receiving
and numerically differentiating the raw signal S within the
range of a predefined window at least a number of times m to
obtain an m order differentiated signal; (b) a module for
finding a histogram that best fits the m order differentiated
signal; (c) a list containing at least one type of predefined
probability density function; (d) a module for finding one
probability density function type from said list that best fits
the distribution of the histogram; (e) a module for determin-
ing the variance of the histogram, said histogram variance
being essentially the m order variance 02(,") of the noise
component N; and (f) a module for, given the histogram
distribution type and the m order variance o, of the histo-
gram, transforming the m order variance 0~ to the zero
order variance 02(0), said 02(0) being the variance of the pdf of
the noise component N, wherein the histogram type as found
in step (d) being the probability density function type of the
noise component N.

Preferably, the apparatus components operate repeatedly
to find the updated probability density function type and the
variance properties of the noise component as the signal S
progresses.
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The present invention also relates to a system for receiving
araw signal S which is combined from a pure signal P and a
noise component N, and for outputting a signal which is
essentially said pure signal, wherein the system comprises:
(a) apparatus as described above for receiving said raw signal
and outputting the probability density function and distribu-
tion type of said noise component into a filter; and (b) a filter
receiving said raw signal and also receiving said probability
density function and distribution type of said noise compo-
nent from said apparatus, and given said received data, pro-
cessing and outputting a signal which is essentially said pure
signal.

Preferably, the filter is an adaptive filter.

Preferably, the filter is a Kalman Filter.

Preferably, the system of the invention as described above
operates continuously in real time.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a general system according to the prior art.

FIG. 2 illustrates a simulated raw signal S that contains a
pure component P and a noise component N.

FIG. 3 shows the 507 differentiation of signal S of FIG. 2.

FIG. 4 shows a histogram that was drawn for the 50 times
differentiated signal of FIG. 3. The solid line in FIG. 4 rep-
resents a Least Mean Square fit of the point of the histogram
to a Gaussian Functions from which the Gaussian parameters
are extracted.

FIG. 5 shows the re-normalized values o, as extracted
from the corresponding o, found for the raw signal of F1G.
2 that was differentiated m=1, 2, 3, . . ., 200 times.

FIG. 6 illustrates how the method of the present invention
can be used in conjunction with a Kalman filter.

FIG. 7 illustrates a simulation of the first derivative (m=1)
of'a 200K normal distributed, N(0, 0,2=1), noise signal (only
partially shown) with the corresponding deduced histogram
(fitted to a Gaussian and arbitrarily scaled). Also shown is the
original density function used to generate the noise signal
(dashed curve). As expected, 0=\20,,

FIG. 8 illustrates a simulation of the Fifth derivative (m=5)
of a normal distributed, noise signal (see also FIG. 7). As
expected, 0=,2520,.

FIG. 9 illustrates an apparatus for performing a method
according to one embodiment of the invention.

DETAILED DESCRIPTION

As said, the knowledge of the properties of the expected
noise component provides to the system designer a very sig-
nificant tool for improving the system structure and behavior.
The essence of this invention is to perform relatively simple
numerical calculations on the noisy signal in order to derive
both the type of the probability density function of the noise
and the properties of said of the probability density function
and in particular the variance of said function.

FIG. 1 shows a typical system. A raw signal S which is
combined of a pure signal P and an additive noise N compo-
nent is provided to the system. Throughout this application, it
should be noted that the invention relates to the characterizing
of the noise which is added not only to an input signal, but
may also relate to a noise that is added to a signal within the
system. The present invention can provide the properties of
the noise component N, given said signal S.

The method of the present invention comprises of the fol-
lowing steps:

1. Defining a portion of the raw signal that may dynamically
progress according to the development of the signal, here-
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inafter defined as the “window”, or the “analysis window”,
provided that the number of elements in said window is
statistically sufficient;

2. Recording the noisy signal S which is combined of a pure
signal portion P and of a noise component N;

3. Numerically differentiating the raw signal at least a number
of times m to obtain an m times differentiated signal;

4. Finding the histogram of the differentiated signal;

5. Providing a list of optional probability density functions,
and from said list finding the one probability density func-
tion that is best fitted to the histogram distribution;

6. Determining from the best fitted probability density func-
tion the parameters that characterize that function, said
function being the probability density function of the m
order differentiated raw signal S, but essentially being a
close approximation to the m order differentiated probabil-
ity density function of the noise component N. The argu-
ments for supporting this assumption are given hereinafter;

7. Transforming the parameters of the fitted, m order difter-
entiated probability density function to extract the param-
eters of the zero order probability density function of the
noise component N of signal S. The transformation is per-
formed using an expression which is suitable for the fitted
probability density function type (as will be elaborated
later, expressions (3) and (4) which are given below are
general expressions that are suitable for any type of prob-
ability density function, while the simplified expression (5)
is suitable for Gaussian probability density function);
FIG. 9 shows an apparatus for performing a method

according to one embodiment of the invention. In particular,

FIG. 9 shows a Noise Estimation Unit 12 and provides ablock

diagram illustrating the method. A noisy, raw signal S=P+N

which is combined of a pure component P and a noise com-
ponent N is provided over line 40 (step 2 above) to a Noise

Estimation Unit 12. The signal S is differentiated m times by

the differentiation block 41 (step 3 above). Then, block 42

draws a histogram for the (m) times differentiated signal as

provided by block 41 (step 4 above). Block 43 receives the
histogram from block 42, and finds a probability density
function type that best fits the distribution of the histogram

(step 5 above). For that purpose, block 43 may use the library

44 containing several probability density function types to

find the one probability density function that best fits the

histogram, or alternatively it may apply an assumed probabil-
ity density function from block 45 (for example, a Gaussian
distribution) (also step 5 above). After finding the probability
density function that best fits the histogram, block 47 which
receives the probability density function type over line 50,
and the histogram over line 51 determines the (m) order
variance 02(,,,) of the histogram (step 6). The (m) order vari-
ance, as well as the probability density function type are
provided into the transformation block 46, which in turn uses
this data (pdf) type and 02(,,,) in order to find the zero order
variance 02(0) while the pdf type remains the same as for the

m order pdf (step 7). Block 46 then outputs both the zero order

probability density function type and the variance 02(0) of'the

noise to any system that may use these valuable parameters of
the noise.

Now, the present invention will be described by means of
an example. FIGS. 2 to 5 demonstrate the method of the
present invention.

EXAMPLE

FIG. 2 illustrates a simulated raw signal S that contains a
pure component P and a noise component N. The duration of
the S signal (i.e., the “window” considered) was of 0.7 s. It
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6

should be clear to any one who is skilled in the art that the
window’s length can be shorter or longer, depending on the
specific case considered. It should also be clear to any one
who is skilled in the art that the length of the window can be
equal to or, preferably, shorter than the length of the signal.
The noise component was intentionally selected to have
Gaussian probability density function with a 0,,=14. The S
signal of FIG. 2 was numerically differentiated 200 times
(step 3 above). The 50” differentiation of signal S is shown in
FIG. 3. From the differentiation result of FIG. 3, a histogram
was drawn as shown in FIG. 4 (the discrete points form this
histogram). A Gaussian function was then fitted (in the Least
Means Square sense) to yield the solid line of FIG. 4. Then,
the parameters of said 507 order differentiation probability
density function of FIG. 4 were extracted. More particularly,
the o5, was found to be 4.432413969422223e+015. Next,
using and an expression o,=f(0,,) (i.e., the initial value is a
function of the extracted value after the differentiation step)
that will be elaborated further hereinafter, o, was found to be
13.958. In addition, from the same expression and the various
O s the value of o, was separately extracted. FIG. 5 shows
the extracted values of oy, as found according to the method
of the present invention for the raw signal of FIG. 2 that was
differentiated m=1, 2,3, .. ., 200 times. It can be seen that o,
was found to be very close to the intended, initial value of 14
for all said values of m. More particularly, the o, of the noise
component was found to be very close to the value the
intended, initial value of 14 as was pre-selected for the pdf
(probability density function) of the noise component N in
this simulation. It can also be concluded that m of as low as 4
or 5 may be sufficient to extract the value of o, with high
accuracy, as the calculated o, for all m larger than 5 are
extremely close to the original value 14. Therefore, it can also
be concluded that in most cases there is no practical need to
differentiate to orders higher than 10.

One of the advantages of the invention as described is the
fact that the method can be relatively easily performed in
real-time, as the amount of data that is necessary for perform-
ing the analysis is relatively small, i.e., only to the extent of
statistical validity. Moreover, the method requires the use of
very limited amount of memory resources, as no historical
data of the signal is advantageous. The only information
necessary is that contained in the selected window, and the
window in most cases can be narrow.

The present invention is applicable to most types of prob-
ability density functions. For each type of pdf one can easily
derive the suitable expression as is necessary in step 7 above.
Therefore, it is preferably recommended to keep in the list of
step 5 above at least one type of probability density function,
or preferably more, to keep those functions that are most
expected for noise probability density functions.

Theoretical Considerations

Considering a stochastic process &(n,), with n, the collec-
tion of stochastic events, in a measurable space (state-space)
so that variance values of the stochastic variables considered
here are finite, a differentiating operator, operating on a signal
vector, may be defined with respect to the index of the signal
data points in their sequenced order (or equivalently, treating
the signal as a time series vector with a unit time step). By
doing this, one may realize that a differentiation procedure, of
the first order, is equivalent to numerical subtracting the ele-
ment 1, from the element n,, |, in the stochastic signal. Since
in such random set of points each point is totally independent
ofall other points and correlated to any other data point within
the set only by the mutual statistics of the sample space,
denoted by Q (i.e. all points (i,j) are uncorrelated where i=j),
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the equivalence to subtracting the element n, from the element
n,,, in the noise signal would be the equivalent of the sub-
traction of two independent Random Variables with identical
statistical distribution (IID).

In contrast with the case of the first derivative, where one
could assume that all individual data points were uncorre-
lated, higher order derivatives involve correlated expressions
that lead, in the general case, to non-trivial expressions for the
resultant probability functions.

Considering the above definitions and referring to some
arbitrary random variable function V(n,,£), referred here as
the original data signal with & as the stochastic random vari-
able, one can now derive the second order derivative index
series, VP(n,,E£@), with E® refers to the (yet) unknown
stochastic random variable corresponding to the second-or-
der derivative vector by realizing that n,=n,—n,_, and n,,
W=p,  -n, so that n,?=n,, , P-n=n, -2n+n, . These
expressions imply that the probability density function of the
second order derivative is the equivalent pdf of the sum of
three independent, however non-identical, random variables
(InID), all with similar, however not identical, probability
density functions. Referring now to the general result that
given two independent random variables &, and &, on the
space R¥, with u and v their respective distribution fanctions
and f and g denote their respective density functions, than the
distribution of the sum &, +&, is the convolution p*v and the
analogue density function of the sum equals the convolution
integral denoted by f*g.

Using the notation f; ¢, = =fz *fz,*f, this implies:

Ty @0 * S 2np)* Fn; M

Following the above arguments, for higher derivatives, it
can now easily be deduced that the m’th derivative of a ran-
dom variable derived from an arbitrary statistically defined
variable can be obtained by noting that the correlation ele-
ments that dictate the derivative expressions are given by the
matrix (hereinafter: “the Stochastic-Derivative Matrix™):

1 -3 3 -1
1 -4 6 -4 1
1 -5 10 -10 5
1 -6 15 -20 15 -6
1 =7 21 =35 35 -21
1 -8 28 -56 70 -56 28

and are governed by the following expression, denoted here
as the Stochastic-Derivative matrix S,”, and given by

s = (—l)j“(m] where (m]
= s .
J J

denote the elements of the binomial coefficients, and the
Stochastic-Derivative matrix S,™, as defined above is in facta
variant of Pascal Triangle.

In terms of a summation of the individual elements needed
to account for the probability density function of the m’th
order numerical derivative, the summation may be written as:
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fa= Y SV f@

J=1

wherein f(z) represents the probability density function ofthe
original random variable. For instance, for the second deriva-
tive this is equivalent to f, o=(f, *F_2,,)*f, . Generalizing
the above, for a set of random variables &, &,, .. ., and a
function z=g(&,, &,, . . . £,,), one can form a new random
variable: £ =g(§,, &,, . . . §,,)- In particular, the density and
distribution functions of &,, in terms of the density and dis-
tribution functions of €, &,, . . . £, can easily be obtained. To
do so one denotes D,={(E,, &, ... E,): g€}, Es, . . . )=z}
noting that (5,22~ {2y S - - - EIZ{E,s Ear - -
£,)ED,} so that:

F()=P(Z=)=P(&,, 82 . - . §,n)eD)

which gives:

Fz(z) = f ffglgz...gm (616-..6,)de1dE ... Ay
D2

Thus, in order to find the distribution probability function of
the new random variable &_, given the distribution functions
of the random variables §;’s, one needs to define the range of
the validity of the new variable z and to evaluate the integral
using the mutual density function.

For the case of independent random variables, the above
expression simplifies with the integrand replaced by

l_[frfj-
=1

Finally:

@

Fz<z):f02f]ﬂ[/gjdad§2...m:szL]ﬂ[s;"fj(f)
1 =1
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Since the density function is the same for all individual ele-
ments of the multiplication term under the integral, expres-
sion (3) can symbolically be written as:

“

= [ 2 Il {gSj”f(f)}d«f‘m’,

whereinF, ™ represents the probability distribution function
of

"V, &)
aim

that can be easily evaluated to derive the respective density
function, recalling that the term

[1s770
=1

really represents a convolution of the original probability
function weighted accordingly.

The following discussion is focused on the case where the
probability density function of the noise statistics is Gaussian.
Forthe Gaussian case, the analysis yields a relatively straight-
forward expression as the Gaussian pdf belongs to the few
probability functions that convolve into similar functions. A
Gaussian distribution is therefore considered, where & is
referred to as the random variable, N(0,0,,%), i.e. a Gaussian
distribution with the first moment equals zero, and the vari-
ance is given by o, as an illustrative probability (the deriva-
tion of the following with mean values other than zero is
straightforward).

For the above, it can be found that the following expression
(5) explicitly describes the resultant statistics, wherein [}(m)
is the sum of the squares of the elements of the m+1’s row in
the Stochastic-Derivative matrix given above, and ct(m) is the
inverse of the square-root of the sum of the squares of the
elements of the m+1’s row of the Stochastic-Derivative
matrix given above.

d" N0, o) (5)

S = amN (O, Bm)ad)

Note that for a normal distribution function, as used above,
the condition atx1/,B is required by the normalization con-
dition.

Using equation (5) and the arguments above, the probabil-
ity density function of a zero mean normal distribution for the
exemplary cases of the first (equation 6), second (equation 7),
and fifth (equation 8) derivatives respectively can be derived
to be as follows:

dN(a, o3) 1 2 1 2 (6)
= T VO V) = =N (V2 )
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10
-continued
d*NQO, 0p) -
T a2
1 . 2

VO VT E o) = N0 (VG o))
LN ) ! 2 ®

s - N(O, (VI32 o) =

V1246524107 4107 52 4 12
1

V252

N(0, (V252 o )')

This was indeed verified by numerical simulations where a
normal distributed random set of 200K elements was gener-
ated (FIGS. 7 and 8), where FIG. 7 illustrates a simulation of
the first derivative (m=1) of a 200K normal distributed, N(O,
0,°=1), noise signal (only partially shown) with the corre-
sponding deduced histogram (fitted to a Gaussian and arbi-
trarily scaled). Also shown is the original density function
used to generate the noise signal. As expected, 0=,20,. Addi-
tionally, FIG. 8 illustrates a simulation of the Fifth derivative
(m=5) of a normal distributed, noise signal (see also FIG. 7).
As expected, 0=\2520,,

In relation to the above, it should be clear that the histo-
grams of the resultant vectors were then taken and are shown
to have Gaussian shapes with variance values compatible
with the above results.

Following the above theoretical considerations, it can obvi-
ously be concluded that expressions (3) and (4) can be used in
the transformation step 7 above, while the simplified expres-
sion (5) can be used when the distribution is Gaussian.

To demonstrate one of the proposed motivations for the use
of'a high-order numerical derivative of a stochastic signal, we
now refer to the derivation of the noise-level of an experimen-
tal output, where noise, either due to experimental set-up or
due to the process itself (or due to both), is added to the signal.
It is the aim of the following to demonstrate how to extract a
simulated noise component such that the simulated noise is
statistically identical to the noise part in the original experi-
mental signal.

For simplicity we assume that the arbitrary noisy, raw
signal can be represented by an arbitrary smooth and continu-
ous signal contaminated by noise wherein S=P +N, N being
the noise that is added to the pure signal P. Let us further
assume that within the interval of validity of P, one can
approximate P (for instance, in the Least Mean Square sense)
by an m-degree polynomial function that may belong to a
complete orthogonal polynomial basis. This can be proven to
be possible for any bounded, smoothed and continuous func-
tion P (see for example the classical proof by K. Weierstrass,
Mathematische Werke, Bd. 111, Berlin 1903, pp. 1-17, and can
also be found in most textbooks on Functional Analysis), but
may be of practical use only when the interval is not too long,
as compared to the structure of the signal, and for a relatively
low polynomial degree.

Assuming the above, it turns out that

dmﬂ S dmﬂ N

d ] = dfmtl’

as the m’th derivative of P, under the above assumptions, is
constant and thus vanishes for higher orders. For most experi-
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mental data, m would not exceed 5 (see the above example).
However the present approach holds for any arbitrarily higher
order.

Now, if the characteristics of the statistical properties of the
high-order derivative of the original noise

+1

gt )

is known, i.e. the probability density function that statistically
describes the initial noise subject to high-order numerical
derivative, in terms of the parameters (assumed to be
unknown) of the statistical nature of the noise (assumed to be
known), one can obtain the specific parameters of the original
noise and thus deduce the noise-level in the original signal S.

FIG. 6 illustrates how the method of the present invention
can be used in conjunction with a Kalman (or Extended
Kalman) filter. The Kalman filter 11 receives at its input the
raw signal S, which, as said, is a combination of a pure signal
P and ofthe noise component N. For alinear system, when the
distribution of the noise is Gaussian, and given the variance
02(0) of the noise distribution, a Kalman filter can provide at
its output a best estimation (optimal) of the pure signal P. In
the system of FIG. 6, the raw signal S is provided in parallel
to both the Kalman filter 11 and to the input of the Noise
Estimation Unit 12, which operates according to the method
of'the present invention, or more particularly, according to the
method as disclosed in steps 1-7 above. The Noise Estimation
Unit therefore analyzes the raw signal S according to the
method of the invention, and provides in real-time to the
Kalman filter over line 13 the variance 02(0) of the noise
component N. The variance 02(0) of the noise component is
one of the few parameters of the initial information that the
Kalman filter requires in order to output the estimated pure
signal P over line 14. Moreover, the Noise Estimation Unit
can output over line 15 both the type of the probability density
function, and the value of the variance 02(0) to any other
component that may require, or use this data.

It should be noted that the exemplary system of FIG. 6 can
operate essentially with most types of filters. In that case,
another type of filter replaces the Kalman filter 11 of FIG. 6.
This feature can be obtained in view of the fact that the Noise
Estimation Unit 12 of the present invention can operate essen-
tially with most types of probability density functions, and
moreover, the unknown type of the probability density func-
tion, as well as its variance 02(0) can be determined and
outputted by the Noise Estimation Unit 12 of the present
invention.

While some embodiments of the invention have been
described by way of illustration, it will be apparent that the
invention can be put into practice with many modifications,
variations and adaptations, and with the use of numerous
equivalents or alternative solutions that are within the scope
of persons skilled in the art, without departing from the spirit
of the invention or exceeding the scope of the claims.

What is claimed is:

1. A method for an apparatus to determine the probability
density function type and the variance properties of the noise
component N of a raw signal S of'a machine or a system, said
raw signal S being combined of a pure signal component P
and said noise component N, the method comprising:

a. defining a window within said raw signal;

b. recording the raw signal S;
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c. numerically differentiating the raw signal S within the
range of said window at least a number of times m to
obtain an m order differentiated signal;

d. finding a histogram that best fits the m order differenti-
ated signal;

e. finding a probability density function type that fits the
distribution of the histogram;

f. determining the variance of the histogram, said histo-
gram variance being essentially the m order variance
02(,,,) of the noise component N;

g. knowing the histogram distribution type, and the m order
variance 02(,,,) of the histogram, transforming the m
order variance 02(,,,) to the zero order variance 02(0), said
02(0) being the variance of the probability density func-
tion of the noise component N, and wherein the histo-
gram type as found in step (e) being the probability
density function type of the noise component N; and

h. the apparatus outputting at least one of the zero order
variance 02(0) or the probability density function type.

2. The method according to claim 1, which is repeatedly
performed as the raw signal S progresses.

3. The method according to claim 2 which is performed in
real-time.

4. The method according to claim 3, wherein the one prob-
ability density function type is the Gaussian type.

5. The method according to claim 1, wherein the probabil-
ity density function type that fits the distribution of the histo-
gram is the one from a list that found to be best fitting the
distribution of the histogram.

6. The method according to claim 5, wherein the list com-
prises only one probability density function type.

7. The method according to claim 1, wherein the transform
is performed by means of' a specific expression suitable for the
said fitted probability density function, wherein said specific
expression is derived from the following general expression

P = fD ) f {ﬁ S}-"f(f)}df‘m’-

8. The method according to claim 1, wherein when the
fitted probability distribution function is Gaussian, the trans-
form is performed by means of the following specific expres-
sion

d" N0, o3)

— 2
- = amIN(O, Bm)ord).

9. An apparatus for determining the probability density
function type and the variance properties of the noise com-
ponent N of a raw signal S of a machine or a system, said raw
signal S being combined of a pure signal component P and
said noise component N, the apparatus comprising:

a. a differentiating module, for receiving and numerically
differentiating the raw signal S within the range of a
predefined window at least a number of times m to
obtain an m order differentiated signal;

b. amodule for finding a histogram that best fits the m order
differentiated signal;

c. alist containing at least one type of predefined probabil-
ity density function;

d. a module for finding one probability density function
type from said list that best fits the distribution of the
histogram;
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e. a module for determining the variance of the histogram,
said histogram variance being essentially the m order
variance 0, of the noise component N; and

f. a module for, given the histogram distribution type and
them m order variance 02(,,,) of the histogram, trans-
forming the m order variance 02(,,,) to the zero order
variance o° , said 0° ) being the variance of the prob-
ability density function of the noise component N,
wherein the histogram type as found in step (d) being the
probability density function type of the noise component
N.

10. The apparatus according to claim 9, wherein the appa-
ratus components operate repeatedly to find the updated prob-
ability density function type, and the variance properties of
the noise component as the signal S progresses.

11. A system for receiving a raw signal S which is com-
bined from a pure signal P and a noise component N, and for
outputting a signal which is essentially said pure signal, com-
prising:

14

a. an apparatus according to claim 9 for receiving said raw
signal and outputting the probability density function
and distribution type of said noise component into a
filter; and

b. a filter receiving said raw signal and also receiving said
probability density function and distribution type of said
noise component from said apparatus, and given said
received data, processing and outputting a signal which
is essentially said pure signal.

12. The system according to claim 11, wherein the filter is

an adaptive filter.

13. The system according to claim 12, wherein the filter is

a Kalman Filter.

14. The system according to claim 11, for operating con-
tinuously in real time.



